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ARSTRACT

Solid propellants under tension loading dilate significantly. Therefore, they may be aptly called dilatable
materials. The amount of volume dilatation depends not only on the extent of defornation. but also on the type of
multiaxial loading (i. e., axiality). A volume-prcscrl’cd set of three invariant was previously introduced asa new set
of independent variables in the potential function. By using the three volume-prese rved invariant, the potential
function could be separated into the dilatation part and the shear part. Furthermore, the dilatation part of the
potential function was determined and theory of dilation was developed. In this paper, the shear part of the potential
function is determined, using a new set of volume-preserved principa stretch ratios.

INTRODUCTION

Solid propellants behave like binonlinear dilatable inatenials, i.e., they dilate significantly under tension loading;
however, they arc almost incompressible under hydrostatic pressure. The dilatation comes mainly from vacuolar
formation between binder and particle. Initially, the solid propellant is a highly filled, two-phase composite with
binder and particles. However, under tension loading, dewetting occurs and vacuoles are formed. Hence, the
propellant becomes a three-phase composite with an additional void phase that results in a large volume increase.
Moreover, the amount of volume dilatation depends not only on the extent of deformation, but also on the type of
maultiaxial loading, i.e, axiality. (It has been observed that volume dilatation under uniaxial tension is significantly
lower than that under equal biaxial tension). It behaves binonlinearly at the onset of dewetting. Before the onset of
dewetting, it may be assumed to be almost incompressible. After dewetting, it becomes dilatable. It has been shown
that a potential function exists which can determine the stress-strain response of solid propellant for different modes
of deformation. Since the propellant is dilatable, the dilatation (volume change) shall be included in the
development of the potential function.

In the previous paper.['1 a volume-preserved set of three invariants was introduced as anew set of independent
variables in the potential function. By using the three volume-preserved invariant, we were able to separate the
potential function into the dilatation part and the shear part. Furtherore, the dilatation part of the potential function
was deterinined and the theory of dilatation was developed.l!] Also in the subsequent paper, the shear part of the
potential function is determined in terms of invariant.[2] In this paper, the shear part of the potential function is
determined in terms of the volume-preserved principal stretch ratios. The purpose of developing the potentia
function in terms of principal stretch ratios, in part, is due to the two approaches available in the current market of
the nonlinear finite element computer codes, i.e., (1) the invariant approach, and (2) the principa stretch ratio
approach. Moreover, in this paper, two approaches have been taken to develop the potential function in terms of

principal stretch ratios, i.e., (1) the analytical representation ( Xun)»?") and (2), the numerical-graphical
representation. Detailed developments are presented here.

In order to present the theory in an orderly fashion, a sutmmary of previous developments is presented in the
following sections.

* This work was carried out, in part, by the Jet Propulsion Laboratory, California Institute of Technology. under a National
Acronautics and Space Administration contract.  Distribution is limited [0 U.S. Government Agencies and [heir contractors;
Critical Technology; October 1993.




NONLINEAR THEQRY OF DILATABLE MATERIALS

It has been stated that propellants behave like binontinear dilatable materials, Under critical stress, dewetting

occurs,and the propellants change from a two-phase to a three-phase composite with an additional void phase.
Since the material is dilatable, the volurne-preserved invariants (I'y, 172, 1'3§ are uscd for the development Of the

theory.

In classical nonlinear elastic theory, the nonlinear stress-strain equation is given by
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where W =W (14,12:13) is potential energy function and the three principal invariant 11,12, 13 are givenby
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where A; are the three principal stretch ratios.

Now, the volume-preserved invariantsI'1, 12, 1“3 are defined by
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Through the chain rule, the nonlinear stress-strain equation becomes (1]
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where Bjj is aleft Cauchy-Green strain tensor.

From the above formulation, one can deduce that the potential function, W, can be given by [!]
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Bg(I'y, I'y) f(;r) = dilatation part of the potential function (6)
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H(TI'}.T"2 ) = shear part of the potential function @




B = the bulk modulus

g(I';, T2 =an anisotropic function to account for the change in overall hulk modulus due to de formation

AV . AV
f- - = a function of volume change - only

(Vo) 0
Thus, for the complete determination of material, the functions H.{, g, and [he constantB have to be deterinined.
MODELING APPROACH

It is interesting to observe that by using volume-preservedinvariants, 1,, one can express [he nonlinear stress-
strain equations under uniform de form ation in three distinct types:

Typel: A general expression which includesthe same order-of-magnitude contribution fiom the dilatation
part and shear part of the potential function,

Type |I: The trace of stress tensor provides an expression whose sole contributor is the dilatation par[ of [he
potential function.

Type 111: The difference between two principal stresses provides an expression whose main contributor is the
shear part of the potential function.

Because of the unique property of Type 11 equations, the dilatation part of the potential function was determined
first (presented in a previous papcr).[l] Once the dilatation part of the potential function is determined, one can
proceed to use a Type Il stress-strain expression to determine the shear part of the potential function because, in a
Type 111 expression, the contribution of the shear part of the potential function is predominate in the stress-strain
equation.

Furthermore, in order to assess the internal consistency of the potential energy function, the dilatation and shear
part of the potential energy functions (which are obtained independently) are substituted into the general expression
of Type |, where this expression provides the same order-of-magnitude contribution from both the dilatation and the
shear part of the potential energy function. It is shown that the total potential energy function describes the

nonlinear biaxial response quite well.

In the following, the explicit expressions of stress-strain are given for the three types of equations:
Potential energy function: W=B g(rl.rz)f(l“31’2~l)+}l(r1.1‘2)
(1) Typel(general expression):
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where Bjj is aleft Cauchy-Green strain tensor.



(2) Type U (expression from the dilatation part of the potential energy function):
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(3) Type Il {expression mainly from the shear sart of the potential energy function);
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DILATATION PART OF THE POTENTIAIL FUNCTION

In order to determine the volume change due to stress and strain fields, one first deterinines the dilatation part of
the potential function in Eq. (6). It is interesting to note that by taking the trace of Eq. (4), one obtains:

Ti oy g(1y.1,) f'(i\!], (i = 1,2,3) (11)
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which exclusively relates the trace of stress to the dilatation potential function. Therefore, we shall take advantage

\Y
of the simplified relation to determine the functions of f %- , 2 (1], 1'2), and the constant B.
[ YO

Expressing Eq.( 1 1) in terms of principal stresses for various uniform deformations, one has:

3-D: General Nonequal Triaxial Tension
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Inthe previous paper.[1]weused the above equations to determine functi OL- \t Loe(l'y, In), andthe
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constant BB, which are givenby the following explicit forms:

B= 287.69 ps,
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where Bisan induced bulk modulus after dewetting, anti was obtained for the very first timme for the solid
propellants.

In the next section, the shear part of the potential function will be determined using the Type Il stress- strain
expression.

DETERMINATION OF THE SHEAR PART OF THE POTENTIAL FUNCTION, H, IN TERMS OF THE
YOLUME-PRESERVED PRINCIPAL STRETCH RATIOS, K*i

As mentioned previously in the modeling approach, we first determined the dilatation part of the potential
function, using a Type 11 stress strain expression. After the functions g and f have been determined, the shear part of
the potential function H will be determined. In the previous paper,[2JH was determined in terms of volume-
preserved invariant T'jand I'y. Now H will be determined in teriis of the stretch ratios. Moreover, the stretch ratio

approach can be implemented by two methods. ( 1) the analytical function representation, and (2) the numericai-
graphical representation. In fact, the numerical-graphical approach provides a much more powerfuland redlistic tool
to determine the potential function, using a simple recursion formula.

To model the shear part of the potential energy function, H, in terms of the principal stretch ratios, it is

necessary to use the voiume-preserved stretch ratios. X: = "l/l(i as independent variables, i.e. H (k?‘ k;, )\;). It is
]3
because, from the derivation of the general potential energy function in terms of new invariants I'i. it is found that H

shall be constant under uniforintension or compression. Under these conditions, [he invariants I'y and 1 are
constant and the condition of H as constant is automatically satisfied.

Therefore, if H expressed in terms of volume-preserved stretch ratios, then the constancy of H under uniform
tension or compression is automatically satisfied also. Furthermore, to forinulate H in terms of Xf,an‘assumption of

separate and symmetric function is proposed, i.e., H 12&?2}»::3\:): h OTTH h ()2:)+ h ()gf). The equation implies
that once the function h (K:) is determined, the function H ()\T,k;. X;) is aiso determined. As mientioned before, to
determine the function h (l;). two approaches are employed. One isto use explicit analytical expression. The other

is to use arecursion formula derived from uniaxial and equal biaxial expression which determine the function h (X*)

in numerical- graphical form from the uniaxial and equal biaxial data. A detailed mathematical derivation is given
for both approaches.

Now, the potential function expressed in terms of the volume-preserved stretch ratios is given by
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i. e, the dilatation part of the potential function canbe expressed in terms of )‘*i through 1',I2.andI’3. In order to

separate the contribution from the dilatation part of the potential function for the stretch ratio expression, wc use the
following expressicn in uniform and homogeneous deformations,
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Substituting the potential energy function, Eq. (18) into the stress-strain Eq.(21) and subtracting Eq. (21a) from
(21 b), or (21b) from (2 1c), etc. (which is Type 111 representation), one has
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whereii and jj arenot summation signs.



For simplicity, one writes
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which are the contributions from the dilation part of the potential energy function.

For the function H(l’;), one can express through the chain rule
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Also with a separate, symmetric function h(k’;), one has
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The next step is to determine the contribution from the dilatation part of the potentia energy functions for
different type of deformations, which is expressed by the function Ajj. By subtracting the experimental stress data,

Tii, from Aij, one obtains the contribution from the shear part of the potential function which is denoted as ATj;. In

the following, various deformations such as uniaxial tension, equal biaxia tension, and other biaxial tension are
illustrated,

For various deformations, the contributions from the shear part of potential energy function ATii are:

-
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where AT, ;" isthe contribution from the shear part of potential energy function.
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(2) Equal biaxialtension (Ty) = Tpy T33=0. % l; 7&’{ ?»; k; = 1)
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All ATii data for uniaxial, equal biaxial, and other biaxial deforinations are presented in Table 1.

*
Using the data in Table 1, the function h(A;)will be determined in terms of (a) the analytical type of
representation, or (b) the numerical-graphical representation.

a. Analytical Type Representation
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n=1 "n

;’a". (36)

By nonlinear curve fitting to the data, one has the constants Hn and on, where n = 3 is sufficient to describe the
response. The various constants are shown in the following

| Coefficients
- 1 B
o2 ]2
‘_(13#’_‘_ 33
w1 121282.177623
_ B2 14460059922
13 --304.8057043

The comparison of calculated and measured data of ATii are shown from Figs. (1) to (6), respectively, for
uniaxial, equal biaxial, and other biaxial deformations. The. prediction is reasonably good!



b. Numerical-Graphical Representation
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From Eqs. (39) and (40), one observes that by replacing A with A 1/ mnkq. (40), and subtracting [he resulting
equation from Eq. (39), one obtains
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By repeatedly replacing A" with A" i and subtracting the previous equation, one obtains
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Thus one can obtain h’ (7&*) numerically fromthe uniaxialand egual biaxial tension data, using the recursion
formula Eq. (42).

ATii” of the uniaxial datais shown in Fig. 7. AT;EB of the equal biaxial data is shown in Fig. 8. By using the
recursion formulain Eq. (42), one obtains the graphical representation of h’ (A*), which is shown in Fig. 9.

I-o check the validity of the graphical form h’, the measured data and the calculated data are compared for
uniaxial, equal biaxial, a = 26.5° and a = 5.7° response as shown from Figs. 10 to 15, respectively. The prediction
is quite good.

CONCLUSIONS

It has been shown that, although the nonlinear response of the solid propellant is quite complex. it can be
adequately described by the nonlinear theory of dilatable materials using a new set of volume-preserved invariant,
I'i. The dilatation part and the shear part of the potential functions can be determined separately by this method,
which provides a very powerful tool to attack the problem. If one follows the classical nonlinear theory of elasticity,
using the first principal invariants, 11, 12 and 13, it is easy to get lost in determining the potential function with these
three independent variables. If one resorts to using brute force by expanding W in terms of 11, 12, and 13 with many
higher order terms, it would be difficult - if not impossible - to deterinine the W. Our method not only provides
effective ways to solve the problem, but also provides a clear physical picture of the potentia function in the role of
overall stress-strain response.



In this paper, the shear part of the potential function in terms of the volume-preserved stretch ratios

)C; = %i/t(; (i ==1,2,3) is determined. This effort to use two scts of variables (i.e., the volume-preserved invariant I's
.
3

and the volum -preserved principal stretch ratios) is, in part, due to the existence of two types of nonlinear finite -
element computer codes, which are now available on the market and which were developed in terms of either
principa invariant or principal stretch ratios.

REFERENCES

[1] Peng, S.T. J. “Constitutive Equations of Solid Propellants With Volume Dilatation Under Multiaxial I.oading-
Theory of Dilatation and Dewetting Criterion, ” presented at the 1992 JANNAF Propulsion Meeting.
Indianapoalis, Indiana, February 24-27, 1992.

[2]Peng,S.T.J, “Constitutive Equations of Solid Propeilants with Volume Dilatation Under Multiaxial Loadings -
Determination of the Shear Part of the Potential Function,” CPIA Publication 591, November 1992,



Table 1. Measured values of ATy for unaxial. equal branial. and biaxial aneles of « = 26.3° and 5.7°

Lam_t| lam_Z| /am_ |lam_i_ |lam_2_*|lam_3_ |del_T11_A measured| del T11_Acal
T Uni | 106 | 0.971[ | 09711 | 1.05062 | 0971457 0.971457 3705646 3906300424
| 1.08 | 0.963i | 0.963 | 107891 |0.962733 0962732 45.7412 4746427265
1.1 | 0.9560 | 0.956. | 1.0978? | 0.954407 | 0.954407 5 1 17169 55.01562178
TV 112 | 0.950€| 0.950¢ | 1,11552 |0.946804 | 0946804 5862526 6146725604
114 0.945¢ | 0.945! | 113250 | 0.93968 | 0.93960 M 01024 67.06799977
1.16 | 0.942¢ | 0.942: | 114862 | 0.933062 | 0.933062 68.39539 71.85016828
1.18 | 0.938¢ | 0.938¢ | “1164671 | 0.92661 |*0.925%1 7090113 | 76.07689282
1.2 | 0.936% | 0.936: | 1.17989 | 0.920615 0.920615 7095367~  79.58767528
7l Lam_1| lam_2 | lam_: am_1_ ‘am_2_*|lam_3_'|del_T11 _Bmeasurec| del_T11_B cal
Zqual Biaxia| 101 101 | 09832 | 1.00900:| 1. 005005 0.982231 12,06993601 10.90315779
] e 102 | 09679 | 1.01763 1,01763 | 0.965651 22.37922372" 28.67451644
ATyEB | 103 | 103 | o953 | “102501! | 1025015 | 0.950117 3356720466 3821268918
B 104 | 1.04- | 09412 | 1,03383 | 1.033833| 0935619 44.74680062 47.44030626
o 1o~ | 105 | 09288 | 1.04173 | 1.041731] 0.921486 54.78087049 ~ | 5672140976
106 106 | 09185 | 1.04802 | 1.04892 | 0.908099 63.06720658 65.21983622
) d02- | 107 | 09003 | 105574! | 1.055745| 0897186 71.57449874 7331127171
| 108 | 108 | 09019 | 10619 | ‘1061912 0.680795 79.14339548 * 80.63973744
0.8955 | 106771 | 1.0677110.877188 | 8623241114 87.52235307
0.8901 | 1.07312; | 1.073127|10,868355 94.68629834 93.94613208
0.8863 | 107780( | 1.077906 | 0.860674 1035311819 99.60965315
0.8833 | 1.08235¢| 1.082356| 0.853611 | 113.8672625 104.8659709
0881 | 1.08651¢| 1.086511[0.847094 | 125.4907161 109.7647515
08795 | 1,09032[ | 1.090326 | 0.841177 139.4787682 114.2429357
0.8771 | 1.094501 | 1.094501 | 0.834771 154.388054 110.1357246
lam_3 ['om_1_| 9-m 2 *|lam_3_] fel_T11_C measured  del_ T11 Ccal
0.979 | 1,019634| 1.002141 | 0.978649 2245208 24.03089828
2.9685 |1.029299 | 1.003317 | 0.967841 30.94567 | . 31.64071523"
1.9592 | 1.038427 |005477 0957749 30767299 3881212865
0.95 | 1.047397| 1.007496 | 0.947645 45,63156 “ | 4596129488
)-9411 | 1055956( 1.010132 | 0.93751 51 92203 '53.03268734
).9337 | 1.064338| 1.011619| 0 92876 5858224 59.47 418024 -
).9259 | 1.072204| 1.014623 | 0919217 6421138 £6.08174959
).9192 | 1,08002 | 1.016606 | 0.910784 7019848 7219300626
)-9126 | 1.087465 | 1.019252 | 0.902201 75.650? 78" 29962915
).9079 | 1.094165| 1.02122 | 0.894948 82.06288 83.55021622
0.904" | 1.100892 | .022257 | 0.888577, 87.68071 '88.31622426
“0.92 | 099219 | 016534 | 0.894939 1039013 8452680265
18972 | 1.11321"| 025325 | 0.8:61116 9974816 | 9743441101
).8943 +118792 | 027343 pszoom 10G3485 + 1018060618
).8921 | 124421 | 028458 0.864738 112,0109 105.7069207
089 _ | 129991 | 029547 0859506 | 117.1250 109.5081816




Lam_1| lam_2
1.02- | 1.002¢
_1.03 | 1.004¢
 1.04- | 1.007
©1.05 1.0
1.06 | 1.014
1.07 | 1017
1.08 | 1.022
1.09 | 1.026
1.1 1.031
1.-'1- | 1.036
112 | -1.04
113 | 1.045
1.14 1.05
115 | 1.056
1.16 | 1.061
147 | 1.066
Lam_1 | lam_2
1.04 | 0.982
1.05 ‘| -0.9i9-
1.06 |‘0.977
107 | -0.976
- 1.08™ | 0.975
1.09 | Q974
1.1*|.0.974"
111 0974
1127 | 0.9745
113 | 0.975
Ciji4 1 0.9755
1.15 | 0.9765
16 | 08775
1.17-| 0.978
Lam.>" Iafr?t 2
104 | 0.982
1,05 | 0,079
1.06 _| 0.977
107 | 0976
1.08 |0.975
1.09 | 0974
1-1- | 0.974
101 | 0.974
1.12 | 0.9745
113 | 0.975
14| 09755
1.15 | 0.9765
16 [09775
1.17_| 0.978

).9359

).9339
).932%

Table | (continued)

lam_ '1;' am_2_‘|lam_3._ | del 122D mea asure d dﬁ'f?ﬁj&
1.019634 | 1002141 097864 -1505775 1779953985
1029299 1003817 096784 2155478 ?7? 8251666
1.038427 | 1.005477| 0.95774 2724024 2773412466
1.047397 | 1.007496 | 0.94764 32746603 3295675307
1.056056 | 1.010132| -0037-51 36.75906 '38 58068878
1.064338 | 1.011619| 0.9287€ 40 37222 4329046282
1.072204 | 1.014623| 0.91921 4332592 4905529513
108002 | 1.016606| 0.91078 4560256 5403667092
1087465 1.019252| 0.90220 “4804121" 5943090976
1.094165 | 1.02122 | 0.89494 49.70917 6398372653
1.100892 | 1.022257 | 0.8885'7" 566453- 67.81747935
1,10722 | 1.023933| 0.88205 5213811 720164861
1,11321 | 1.025325 0.87611( 54.37531 75 84600603
1.118792 | 1.027343 | 0.87003 58.04663" 80.02429593
1.124421| 1.026458| 0.86473/ 61. 01143 = - 8348931385
1.129991| 1.029547| 0.85956( | ___ 66.46781 8691625842
am_1_.[ 3m_2_*|am_3_ |lel_T11_C measured| del T11 C cal
1039987 | ).981988 | 0.97918¢ 2912121 30.37062155
1.049285| ).978333 | 0.97413¢ 3418681 35.12687017
1.058579| 0.97569 | 0.9682" 38.8937 140.13243535
1067686 | <973889 | 0.96171¢ ' 43,27225 4521853027
1.07641 | ).971759 | 0.95601: 47,43904 49.79111333
1.084903 | ).969499 | 0.950687 524484 _ | 54.0604769
1.093117 | ).967906 | 0945141 56.81252 58.25591723
1.101239 | ).966313 | 0.93972¢ 61.42745 62.31519781
1.109022 | ).964948 | 0.93445 ~ 65.90205 66.16043095
1110409 | ).963274 | 0°.92988 70.22643 69.53218637
112375 | ),961595 | 0.92541€ 74,0082 72.76839819
1131092 | 1960445 | 0920512 | 7753790 76.15274727
L 138063 | ).959014 | 2.91623¢ 80.44569 7910253735
1.144971| ).957079 | 0.91255% 82.12308 81.67887291
am_1_«[ wm_2_"\sm_3 | Jel_T22D measured | 9el_T22-.Dcal
1,039987 | ),981988 )97—§i§e 1277035 9.704557212
1.049285 | 1.978333 | ).97413€ 16.0969 ' | 1022332447
1058579 | 0.97569 | 0.9682 19. 34982 1156015788
1.067686 | 1973869 | 1.96171€ 22.03454 - 1353544041
1.07641 | 1971759 | ).956012 2453934 7510098715
1.084963 | 1.969499 | ) 950687 25.92298 16.48519239"
1093117 | 1.967906 | ).945149 290448 18.30026928 -
1101239 | 1966313 | 1.939724 “3114097 20.11203853
1.109022,| 1.964948 | 0.93445 32.61831 2199619632
1.118-R [ 1963274 | 0.92980 3394045 23.44864636
112375 | 1961595 | ) 925418 3540875 24.87566187
1.131092 [ 1960445 | ).920512 364127 2679286452
1.138063 | 1959014 | ).916239 3765085 2829783693
1144971 | 957079 | ),912552 3903038 293042388
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Fig. 1. comparison of the calculated andmeasured data of AT for unaxial tension (RSRM, 1T = 25°C)
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Fig. 2 Comparison of the calculated and measured data of AT} for equal biaxial tension (RSRM, T - 25°C)
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160 [T T
150 |
140
130 |
120 |-
110
100 |
90 |-
80
70
60 | .
50 | -
40 |- -
30| -]
20 |- .
10 |* -

| ! 1 I

RSRM

a = 45°, T = 25°C

0 1 S| PR N VN NN TN RN S R S ! | | )
1.0 102 104 106 1.08 1.10 112 1.14 1.16 1.18

1.1. VOLUME-PRESERVED STRETCH RATIO

Fig. 8. Experimental data of AT]]EB versus )\Tof equal biaxial deformation
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Fig. 10. Comparison of the calculatedand measured data of AT for unaxial tension
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Fig. 11. Comparison of the calculated and measured dataof ATy for equal biaxial tension
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Fig. 14. Comparison of the calculated and experimental data of AT B versus )\T for = 35.7°

110 T [ T ‘ T [ T l h l T ] T [ T l T
1001 RSRM )
0 a=57° T=25C i
80 -
% 707 ——— CALCULATED n
m- 60 e MEASURED DATA -
N
’,_N 50 — ~
< 40 - o ' -
30 . . N
¢ -—
20 B * _
10 . -
0 L | P oo vt Y | L | PO 1 | i1 1

10 102 104 106 108 1.10 1.12 1.14 1.161.18
)\'1. VOLUME-PRESERVED STRETCH RATIO

Fig. 15. Comparison of the calculated and measured data of AT22B Versus )\1* for a-5.7°



